TEA Project’s Sources of Truth: Blockchain, Hardware, and Time

There are Three Chains in the TEA Project

The most frequently asked question about the TEA project is if it’s really a blockchain project? Well, the simple answer is no it’s not. The longer answer is that the TEA project sits on top of a blockchain as a so-called layer-2 solution. But it’s not a blockchain itself. The biggest advantage is that TEA won’t compete with any existing blockchain projects, they cooperate instead.

Blockchain — the Layer-1 Supporter

As I mentioned above, TEA itself is not a blockchain, but it’s built on top of blockchain technologies. TEA uses the blockchain as a layer-1 to provide:

  • Economic incentives and penalties that shape its token economy.
  • Immutable trust information storage such as credit history, key IDs and hashes.
  • Block height as a universal clock between TEA nodes.

TEA Runs on Top of Blockchain

TEA itself is not a blockchain, but it is built on top of blockchain technologies. TEA uses blockchain as a layer-1 to provide

  • Economical incentive and penalty that forms the basis of its token economy.
  • Immutable trust information storage, such as credit history, key IDs and hashes.
  • Block height as a universal clock between TEA nodes.

TEA Works for Blockchain

TEA not only utilizes blockchain, but TEA also works as a layer-2 solution for layer-1. It can offload expensive and computationally complex tasks from layer-1, run the code in a trusted environment and send the result back to the blockchain together with verifiable Proof of Trust (PoT) data. In our milestone 1 demo, we run a Tensorflow image recognization algorithm offloaded from the blockchain. Have you ever dared run Tensorflow algorithm in a smart contract? Before the TEA Project, you’d have to have been crazy rich to try such a thing.

Delegation Chain — Where the Data and Code Flow

  • A client sends secure data or code to a trusted TEA node as a delegator. If the client doesn’t trust any other nodes, they would be best served owning a TEA node so that they will act as a delegator for their own data or code.
  • A delegator will be looking for qualified executors among all the TEA nodes in the IPFS p2p network. Remote attestation is done between each node before exchanging any sensitive information
  • Data or code will be transferred via a repin to a new delegator (called a pinner) to host, or to an executor to run.
  • No matter where the data or code goes, the proof of delegation (PoD) will be attached at each step. It therefore becomes a delegation chain.
  • Anyone can verify the delegation chain from the latest step all the way up to the first delegator or the client to make sure the chain is valid. Any hacks in the middle would be easily discovered via the blockchain.
  • TEA’s layer-1 blockchain will be used to do the verification. Any incentives or punishments is then applied to the participating nodes.

Trust Chain — Our Hardware Security Guard

We support 2 trusted hardware solutions, TEE or TPM/HSM. In the case of TEE, the validation is centralized, so no chain is required. In the case of TPM/HSM, a trust chain runs through the entire remote attestation workflow.

The Trust Chain

--

--

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store